Abstract

BackgroundTotal soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS.ResultsDose-dependent molecular response to Pb (II) involved a total of 14 up-regulated and 21 down-regulated proteins. The induction of an isoform of glyceraldehyde 3-phosphate dehydrogenase, alcohol dehydrogenase class V, mRNA splicing factor, ATP-dependent RNA helicase, thioredoxin reductase and actin required a Pb (II) dose of at least 50 μM. Analysis of the proteome dynamics of mid-exponential phase cells of P. chrysosporium subjected to 50 μM lead at exposure time intervals of 1, 2, 4 and 8 h, identified a total of 23 proteins in increased and 67 proteins in decreased amount. Overall, the newly induced/strongly up-regulated proteins involved in (i) amelioration of lipid peroxidation products, (ii) defense against oxidative damage and redox metabolism, (iii) transcription, recombination and DNA repair (iv) a yet unknown function represented by a putative protein.ConclusionThe present study implicated the particular role of the elements of DNA repair, post-tanscriptional regulation and heterotrimeric G protein signaling in response to Pb (II) stress as shown for the first time for a basidiomycete.

Highlights

  • Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS

  • To investigate the proteome response of P. chrysosporium to Pb (II) exposure we used 2D electrophoresis followed by MALDI-TOF analysis

  • The newly induced G protein beta subunit-like protein (Figure 2c) demonstrated in our work provided evidence for heterotrimeric G protein signaling under Pb(II) stress in P. chrysosporium

Read more

Summary

Introduction

Total soluble proteome alterations of white rot fungus Phanerochaete chrysosporium in response to different doses (25, 50 and 100 μM) of Pb (II) were characterized by 2DE in combination with MALDI-TOF-MS. Heavy metal pollution is a major environmental concern due to its toxic effects through the food chain and its high persistence in the environment [1]. Lead (Pb) is one of the most abundant toxic metal; mining and smelting activities, lead containing paints, paper and pulp, gasoline and explosives as well as the disposal of municipal sewage sludge enriched with Pb being the main sources of pollution [2]. Possible mechanisms involved in metal-induced oxidative stress were extensively reviewed by Ercal et al [3]. As a redox-inactive metal, Pb is known to deplete cells’ major antioxidants, thiol-containing antioxidants and enzymes in particular. The unique oxidative enzyme system of white-rot basidiomycetes is directly involved in complete lignin mineralization and degradation of various xenobiotic compounds as well as dyes [4,5].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.