Abstract

Alfalfa (Medicago sativa L.) is a major forage crop worldwide that is relatively sensitive to soil salinity. Improved cultivars with high production on saline soil will benefit many producers and land managers. This study reports the characterization of physiological responses of two unrelated experimental alfalfa half-sib families, HS-A and HS-B, selected for their improved survival under saline conditions (up to EC 18). Six-week-old plants were subjected to NaCl-nutrient solution treatment for three weeks starting at an electrical conductivity (EC) of 3 dS m(-1) with incremental increases of 3 dS m(-1) every week, reaching 9 dS m(-1) in the third week. HS-B showed greater leaf number (72%) and stem length (44%) while HS-A showed better leaf production (84%) under salt treatment compared to the initial genetic backgrounds from which they were developed. This improved growth is associated with 208% and 78% greater accumulation of chlorophyll content in HS-B and HS-A, respectively. Both HS-A and HS-B also showed improved capability to maintain water content (RWC) under salt stress compared to the initial populations. Differing from its initial populations (P-B), HS-B did not accumulate Na in shoots after salt treatment. HS-B also maintained K(+)/Na(+) and Ca(2+)/Na(+) ratios, while P-B showed 59% and 69% decrease in these ion ratios, respectively. Na(+) content in HS-A was not different from its initial populations (P-A) after salt treatment. However, HS-A showed an enhanced accumulation of Ca(2+) and maintained the levels of Mg(2+) and K(+) in shoots compared to the P-A populations. This study provides physiological support of improved salt tolerance in HS-A and HS-B and suggests that these plants maintain ion homeostasis but have different mechanisms of coping with high salinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.