Abstract

Esophageal peristalsis is controlled by the brainstem via vago-vagal reflex. However, the precise regulatory mechanisms in the striated muscle portion are largely unknown. The aim of this study was to characterize peristaltic motility in the portion of the esophagus using a novel in vivo method in rats. A balloon-tipped catheter was placed in the esophagus of a rat anesthetized with urethane. To induce esophageal peristalsis, the balloon was inflated by water injection. When the balloon was inflated near the bronchial bifurcation, the balloon was transported in the aboral direction. Vagotomy abolished the peristaltic response. The threshold volume for inducing esophageal peristalsis varied according to the velocity of balloon distention; the volume being effective to induce peristalsis at a low inflation speed was smaller than the threshold volume at a rapid inflation speed. Even in the absence of inflation, keeping the balloon inside the esophagus during an interval period prevented subsequent induction of peristaltic motility. In addition, a nitric oxide synthase inhibitor abolished the induction of esophageal peristalsis. Our findings suggest that (a) in addition to the intensity, the velocity of distention is important for activating the mechanosensory mechanism to induce esophageal peristalsis, (b) tonic inputs from afferent fibers located at the mucosa may reduce the excitability of mechanosensors which is necessary for inducing peristalsis, and (c) nitric oxide plays essential roles in the induction of esophageal peristalsis. These results provide novel insights into the regulatory mechanisms of esophageal motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.