Abstract

This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing β-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside (Rb1). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside Rb1 by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside Rb1 into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher β-glucosidase and β-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and 35°C in hydrolysis of ginsenoside Rb1. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside Rb1 fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside Rb1 significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the β-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside Rb1 and convert to Rd during fermentation of the ginseng. The β-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.