Abstract
Gram-negative bacteria are generally more tolerant to disinfectants than Gram-positive bacteria due to outer membrane (OM) barrier, but the tolerant mechanism is not well characterized. We have utilized comparative proteomic methodologies to characterize the OM proteins of E. coli K-12 K99+ in response to phenol stress and found that nine proteins were altered significantly. They were OM proteins OmpA, FadL, LamB, and OmpT, cytoplasmic-associated proteins AceA and EF-Tu, inner membrane protein AtpB, putative capsid protein Q8FewO, and unknown location protein Dps. They were reported here for the first time to be phenol-tolerant proteins. The alteration and functional characterization of the four OM proteins were further investigated using western blotting, genetically modified strains with gene deletion and gene complementation approaches. Our results characterized the functional OM proteins of E. coli in resistance to phenol, and provide novel insights into the mechanisms of bacterial disinfectant-tolerance and new drug targets for control of phenol-resistant bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.