Abstract

AbstractWe demonstrate the applications of several novel techniques in solid-state nuclear magnetic resonance spectroscopy (SSNMR) to the structural studies of mesoporous organic-inorganic hybrid catalytic materials. Most of these latest capabilities of solid-state NMR were made possible by combining fast magic angle spinning (at ≥ 40 kHz) with new multiple RF pulse sequences. Remarkable gains in sensitivity have been achieved in heteronuclear correlation (HETCOR) spectroscopy through the detection of high-λ (1H) rather than low-λ (e.g., 13C, 15N) nuclei. This so-called indirect detection technique can yield through-space 2D 13C-1H HETCOR spectra of surface species under natural abundance within minutes, a result that earlier has been out of reach. The 15N-1H correlation spectra of species bound to a surface can now be acquired, also without isotope enrichment. The first indirectly detected through-bond 2D 13C-1H spectra of solid samples are shown, as well. In the case of 1D and 2D 29Si NMR, the possibility of generating multiple Carr-Purcell-Meiboom-Gill (CPMG) echoes during data acquisition offered time savings by a factor of ten to one hundred. Examples of the studied materials involve mesoporous silica and mixed oxide nanoparticles functionalized with various types of organic groups, where solid-state NMR provides the definitive characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.