Abstract

In this study, nanostructured biodegradable pure Zn, Zn-4 wt. % Mn and Zn-24 wt % Mn alloys were produced by 20 h mechanical alloying and consequent cold pressing and sintering. Structural evolutions were investigated using the X-ray diffraction technique. Also, the microstructure was characterized by scanning electron microscopy. The effects of alloy composition on density, mechanical properties, corrosion behavior in Hank's solution, cell viability and cell attachment were investigated. Crystallite size of the synthesized alloys after 20 h of milling reached to less than 40 nm and remained less than 80 nm after consolidation and sintering for 1 h. Alloys contain MnZn13 as second phase which affect mechanical and corrosion properties. Compressive yield strength of Zn, Zn-4Mn and Zn-24Mn alloys reached from 33 to 290 and 132 MPa and corrosion rate of Zn-4Mn tailored to 0.72 mm/yr. Cell viability and cell attachment show biocompatibility of these alloys. Results demonstrate that Zn-Mn alloy can be a new suitable biodegradable candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.