Abstract

A novel ceramic bond ultrafine diamond wheel was developed to acquire nanoscale chips for face nanogrinding. The ceramic bond consists of silicon carbide, alumina, silica, sodium chloride, and sodium bicarbonate. Damage-free subsurfaces of soft-brittle mercury cadmium telluride films were obtained directly by face nanogrinding using the developed ultrafine diamond wheel. Twins and nanocrystals with random orientations were observed. The thickness of the nanoscale chips varied from 21 to 30.2 nm, and their cross-section was triangular. A novel model for maximum undeformed chip thickness for face nanogrinding was constructed. The calculated results obtained from the model are in good agreement with those found experimentally. The surface roughness and peak-to-valley ratio induced by face nanogrinding were approximately stable at around 1.9 and 16 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.