Abstract

This study explores the mechanical and optical properties of nanoporous copper (NPC) films dealloyed in acid and base using qualitative and quantitative measurements. Two types of NPC films (NPC 1 and NPC 2) were prepared by dealloying precursor films in different corrosive solutions. The films were characterized using atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM). The AFM analysis revealed distinct nanoporous structures in both films, with NPC 2 showing larger pore sizes and the presence of copper aggregations on the surface. Rugosity measures showed that NPC 2 had higher rugosity than NPC 1 and indicated fundamental differences in the height distributions of the surface nano-topography. The Minkowski connectivity analysis highlighted differences in connectedness and topological characteristics between the two samples. The analysis of the GLCM features showed clear distinctions in ASM, Contrast, Dissimilarity, Energy, and Homogeneity between NPC 1 and NPC 2. The s-SNOM results demonstrated altered optical properties, with NPC 1 showing higher contrast at 1550 nm, while NPC 2 exhibited reversed-phase contrast at 561 nm. The phase contrast at 638 nm indicated a red-shifted optical absorption peak in NPC 2 compared to NPC 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.