Abstract

The list of diseases linked to defects in lipid metabolism has recently been augmented by the addition of hyperimmunoglobulinemia D and periodic fever syndrome (HIDS: MIM 260920), which are correlated with depressed levels of mevalonate kinase activity [1,2] and protein [1]. More specifically, a V377I substitution has been proposed to account for this disease. We observed that V377 appears to be far from invariant in eukaryotic mevalonate kinases. Prokaryotic mevalonate kinases are lower in molecular weight and several terminate prior to residue 377 of the eukaryotic proteins. These observations prompted our direct test of the impact of V377 on activity and protein stability by engineering a V377I mutation in a recombinant human mevalonate kinase. The mutant protein has been isolated and kinetically characterized. In comparison with wild-type enzyme, V377I exhibits only modest differences (notably ≥6-fold inflation of K m(MVA)) that do not account for the diminished mevalonate kinase activity assayed in HIDS cell extracts. Moreover, thermal inactivation (50°C) of isolated wild-type and V377I enzymes demonstrates little difference in stability between these proteins. We conclude that a single V377I substitution is unlikely to explain the observation of depressed mevalonate kinase stability and catalytic activity in HIDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.