Abstract

Lipids in the plasma membrane of the general fatty acid auxotroph Butyrivibrio S2 pack as a bilayer that is characterized by a high order and high motional anisotropy and a low membrane fluidity compared to mammalian plasma membranes. Lipid packing as determined by the electron spin resonance (ESR) order parameter and membrane fluidity as measured by ESR correlation times are, however, comparable to those of other bacterial membranes. Membranes of the organism grown with saturated fatty acids of well-defined hydrocarbon chain length undergo a broad reversible endothermic phase transition, the peak temperature of which is well below the growth temperature; the end-point temperature of this thermal transition approximately coincides with the minimum temperature supporting significant growth of the organism. The lipid phase transition is also reflected in the temperature dependence of various ESR parameters, whereby the transition temperature thus derived is higher than the peak temperature of the endothermic transition but still lower than the growth temperature. ESR and calorimetry evidence taken together suggest that the endothermic transition is a gel to liquid-crystal transition and that, at the growth temperature, the plasma membrane of Butyrivibrio S2 is in the liquid-crystalline state. Similar values were measured for the order parameter of cell membranes of Butyrivibrio S2 regardless of whether the organism was grown on myristic, palmitic, or stearic acid. Butyrivibrio S2 has a mechanism enabling it to maintain membrane packing and fluidity at a fairly constant level.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.