Abstract
BackgroundSelection markers are useful in genetic modification of yeast Pichia pastoris. However, the leakage of the promoter caused undesired expression of selection markers especially those toxic proteins like MazF, halting the cell growth and hampering the genetic manipulation in procaryotic system. In this study, a new counter-selectable marker-based strategy has been established for seamless modification with high efficiency and low toxicity.ResultsAt first, the leaky expression of the enhanced green fluorescent protein (EGFP) as a reporter gene under the control of six inducible promoters of P. pastoris was investigated in two hosts Escherichia coli and P. pastoris, respectively. The results demonstrated that the DAS1 and FDH1 promoters (PDAS1 and PFDH1) had the highest leakage expression activities in procaryotes and eukaryotes, and the DAS2 promoter (PDAS2) was inducible with medium strength but low leakage expression activity, all of which were selected for further investigation. Next, Mirabilis antiviral proteins (MAPs) c21873-1, c21873-1T (truncated form of c21873-1) and c23467 were mined as the new counter-selectable markers, and hygromycin B (Hyg B) resistance gene was used as the positive-selectable marker, respectively. Then, modular plasmids with MAP-target gene-Hyg B cassettes were constructed and used to transform into P. pastoris cells after linearization, and the target genes were integrated into its genome at the BmT1 locus through single-crossover homologous recombination (HR). After counter-selection induced by methanol medium, the markers c21873-1 and c21873-1T were recycled efficiently. But c23467 failed to be recycled due to its toxic effect on the P. pastoris cells. At last, the counter-selectable marker c21873-1 under the tightly regulated PDAS2 enabled the encoding genes of reporter EGFP and tested proteins to be integrated into the target locus and expressed successfully.ConclusionsWe have developed MAP c21873-1 as a novel counter-selectable marker which could perform efficient gene knock-in by site-directed HR. Upon counter-selection, the marker could be recycled for repeated use, and no undesirable sequences were introduced except for the target gene. This unmarked genetic modification strategy may be extended to other genetic modification including but not limited to gene knock-out and site-directed mutagenesis in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.