Abstract
Iron-based shape memory alloys (Fe-SMAs) are e-merging materials with extensive application in civil structures owing to their unique properties, including the shape memory effect. However, it is crucial to understand the time dependent behavior of Fe-SMAs for their effective application as pre-stressing element. In particular, behavior at individual stress, the underlying mechanism, and the transformation kinetics have not been investigated yet. To address these important fundamental research gaps, in-situ compression creep and stress relaxation experiments with high-energy X-ray diffraction (HEXRD) of a Fe-17Mn-5Si-10Cr-4Ni-1(V,C) Fe-SMAs were conducted. The time-dependent behavior of the Fe-SMA was investigated at different stress levels with respect to the yield strength (YS) at room temperature. The experimental result showed that the material exhibits a creep strain of up to 1.84 % and 56 MPa relaxed stress at test stress of 769 MPa (1.6 σYS) within one hour of holding. Stacking fault probability and phase volume fraction quantification provide an understanding of the mechanisms based on different stress levels. The transformation kinetics traced from the characteristics of HEXRD peaks offer further insights on creep depending on the contribution of {hkl} families. The paper concludes with an evaluation of the existing models for predicting creep and stress relaxation of Fe-SMA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.