Abstract

PurposeThe literature reveals there is a limited knowledge regarding the extraction of long natural fibers, in particular those extracted from leaves. This investigation aims to present the extraction process and the characterization of long natural cellulose fibers from doum palm leaves (Hyphaene thebaica L.), with properties suitable for polymeric composite materials and textile applications.Design/methodology/approachThe resulting H. thebaica L. fibers were identified using Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The physical properties of the extracted fibers were measured to estimate the reliability of extraction conditions. Mechanical properties were evaluated to determine ultimate strength, Young’s modulus and strain-at-failure of the fibers of the doum leaves.FindingsThe following properties of the doum palm are listed in this paper: physical properties of doum palm fibers (H. thebaica L.), TGA, XRD of doum palm fibers, tensile properties of doum palm fibers and surface morphology of doum palm fibers.Research limitations/implicationsLike synthetic fibers, the inclusion of short or long natural fibers into the polymer matrix can increase tensile, flexural and compressive strengths of these matrixes. Compared to the short-length natural fibers, longer-length fibers provide better reinforcements and therefore accord higher performances to the composites. Long fibers can also provide exceptional opportunities to develop a new class of advanced lightweight composites and have the potential to rival glass fiber in the manufacture of composite materials, using matrix materials, such as polypropylene, epoxy and phenolic resins.Originality/valueThe following values are presented in this paper: density of doum palm fibers = 1.14-1.40 g/cm², linear density (Tex) = 33.10 ±11.5, equivalent diameter (µm) = 178.72 ± 41.7, diameter (µm) = 137.02-220.42, tensile strength (MPa) = 124.84-448.10, Young’s modulus (GPa) = 8.06-19.59, strain-at-failure (%) = 0.81-2.86.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.