Abstract

The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.