Abstract

The current study employs hybrid-exchange density functional theory to show that the Lewis base, NH(3), binds to the beta-AlF(3) (100) surface with a binding energy (BE) of up to -1.96 eV per molecule. This is characteristic of a strong Lewis acid. The binding of NH(3) to the surface is predominately due to electrostatic interactions. There is only a small charge transfer from the NH(3) molecule to the surface. The BE as a function of coverage is computed and used to develop a lattice Monte Carlo model which is used to predict the temperature programed desorption (TPD) spectrum. Comparison with experimental TPD studies of NH(3) from beta-AlF(3) strongly suggests that these structural models and binding mechanisms are good approximations to those that occur on real AlF(3) surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.