Abstract

Optical components for large-aperture laser systems may contain a number of defect (damage) sites formed as a result of exposure to the propagating laser beam. When exposed to high-power laser irradiation, a number of damage sites tend to grow. In this work, we explore fluorescence microscopy and optical coherence tomography for the characterization of such defect sites. Fluorescence microscopy demonstrates the presence of a layer of highly emissive, and therefore absorbing, modified material. Optical coherence tomography can image the network of cracks formed around the core of the damage site. This information may be useful for the application of a mitigation process to prevent damage growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.