Abstract

In this paper, an efficient analytical method for characterizing large array of plasmonic nanoparticles located over planarly layered substrate is introduced. The model is called dipole mode complex image (DMCI) method since the main idea lies in modeling a subwavelength spherical nanoparticle at its electric scattering resonance with an induced electric dipole and representing the electromagnetic (EM) fields of this electric dipole over the layered substrate in terms of finite complex images. The major advantages of the proposed method are its accuracy and rapid calculation in characterizing various kinds of large periodic and aperiodic arrays of nanoparticles on layered substrates. The computational time can be reduced significantly in compared to the traditional methods. The accuracy of the theoretical model is validated through comparison with numerical integration of Sommerfeld integrals. Moreover, the analytical results are compared well with those determined by full-wave finite difference time domain (FDTD) method. To demonstrate the capability of our technique, the performances of large arrays of nanoparticles on layered silicon substrates for efficient sunlight energy incoupling are studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.