Abstract

We study individual superparamagnetic Fe3O4 (magnetite) nanoparticles in solution using a double nanohole optical tweezer with magnetic force setup. By analysis of the trapping optical transmission signal (step size, autocorrelation, the root-mean-square signal, and the distribution with applied magnetic field), we are able to measure the refractive index, magnetic susceptibility, remanence and size of each trapped nanoparticle. The size distribution is found to agree well with scanning electron microscopy measurements, and the permeability, magnetic susceptibility and remanence values are all in agreement with published results. Our approach demonstrates the versatility of the optical tweezer with magnetic field setup to characterize nanoparticles in fluidic mixtures with potential for isolation of desired particles and pick-and-place functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.