Abstract
Terahertz waves are generated using a femtosecond laser pulse in a periodically poled stoichiometric lithium tantalate crystal and simultaneously detected via a non-collinear optical parametric interaction inside the same crystal. Real time up-conversion signal between the generated THz and an optic probe pulses is measured depending on the beam overlapped conditions using a general silicon-photodiode for the THz detection. The non-collinear geometry is to facilitate manipulated property of the position-dependent bandwidth at narrow and broad bandwidths of 45 GHz and 3.3 THz, respectively at the one crystal. Furthermore, an aperture effect at the detection part is characterized as the function of size and position owing to the spatial distribution of the frequency conversion signal and it is applied in optimization of the in-situ detection scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Infrared, Millimeter, and Terahertz Waves
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.