Abstract

Radiation necrosis (RN) is caused by vascular damage and brain parenchymal injury resulting in inflammation following radiotherapy (RT) for brain metastases. The impact of immunotherapy (IO) on the immune cellular microenvironment in patients' brain metastases is unknown. The objective of this study was to characterize the inflammatory microenvironment in the setting of RN compared to recurrent metastasis and determine whether IO treatment affects the cellular infiltrates. Adult patients with brain metastases from solid tumors who received both systemic IO and RT prior to resection of intracranial lesions were retrospectively analyzed. The resection either showed biopsy-proven RN or recurrent tumor. A group of patients who developed RN and were not on IO was reviewed as well. A total of 18 patients were categorized into one of three groups: necrosis, IO+RT; tumor, IO+RT; and necrosis, RT. Surgical specimens were stained for immune and inflammatory components and reviewed by a neuro-pathologist who remained blinded during the analysis. The presence or absence of lymphocytes, perivascular cuffs, plasma cells, macrophages, and fibrinoid vascular changes was characterized in a semiquantitative manner. The median age was 61.5 years (range 37-82 years). Seventy-seven percent of primary cancers were melanoma. Patients with RN were more likely to exhibit immune infiltrates compared to patients with recurrent metastasis. Limited analysis showed 100% of patients in "necrosis, IO+RT" had quantifiable cell counts; conversely, 83.3% of patients in "tumor, IO+RT" lacked quantifiable cell counts. Additionally, 83.3% of patients in "necrosis, RT" showed immune cells, including lymphocytes, macrophages, plasma cells, and cuffing. The immune microenvironment of brain metastasis following RT and IO showed higher levels of cell infiltrates in the RN setting versus the recurrent tumor setting. Patients who received prior IO compared to those with no IO had similar immune cell infiltrates adjacent to RN. Lower levels of immune cells in tumor recurrence following IO and RT raise the possibility that an environment lacking primed immune cells may decrease the efficacy of IO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.