Abstract

Pseudallescheria boydii is a fungal pathogen that causes disease in immunocompromised patients. Ceramide monohexosides (CMHs) were purified from lipidic extracts of this fungus, showing that, as described for several other species, P. boydii synthesizes glucosylceramides as major neutral glycosphingolipids. CMHs from P. boydii were analyzed by high-performance thin-layer chromatography, gas chromatography coupled to mass spectrometry, fast atom bombardment-mass spectrometry, and nuclear magnetic resonance. These combination of techniques allowed the identification of CMHs from P. boydii as molecules containing a glucose residue attached to 9-methyl-4,8-sphingadienine in amidic linkage to 2-hydroxyoctadecanoic or 2-hydroxyhexadecanoic acids. Antibodies from a rabbit infected with P. boydii recognized CMHs from this fungus. Antibodies to CMH were purified from serum and used in indirect immunofluorescence, which revealed that CMHs are detectable on the surface of mycelial and pseudohyphal but not conidial forms of P. boydii, suggesting a differential expression of glucosylceramides according with morphological phase. We also investigated the influence of antibodies to CMH on growth and germ tube formation in P. boydii. Cultures that were supplemented with these antibodies failed to form mycelium, but the latter was not affected once formed. Similar experiments were performed to evaluate whether antibodies to CMH would influence germ tube formation in Candida albicans, a fungal pathogen that synthesizes glucosylceramide and uses differentiation as a virulence factor. Addition of antiglucosylceramide antibodies to cultures of C. albicans clearly inhibited the generation of germ tubes. These results indicated that fungal CMHs might be involved in the differentiation and, consequently, play a role on the infectivity of fungal cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.