Abstract
The current methods for characterization of frequency-dependent material properties of human liver are very limited. In fact, there is almost no data available in the literature showing the variation in dynamic elastic modulus of healthy or diseased human liver as a function of excitation frequency. We show that frequency-dependent dynamic material properties of a whole human liver can be easily and efficiently characterized by an impact hammer. The procedure only involves a light impact force applied to the tested liver by a hand-held hammer. The results of our experiments conducted with 15 human livers harvested from the patients having some form of liver disease show that the proposed approach can successfully differentiate the level of fibrosis in human liver. We found that the storage moduli of the livers having no fibrosis (F0) and that of the cirrhotic livers (F4) varied from 10 to 20 kPa and 20 to 50 kPa for the frequency range of 0-80 Hz, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.