Abstract

AbstractVariable temperature atomic force microscopy (AFM), scanning surface potential microscopy (SSPM) and piezoresponse imaging were applied to the characterization of a model BaTiO3(100) surface. The influence of the domain structure on surface topography, surface potential and piezoresponse image is discussed. The domain induced surface corrugations and piezoelectric response were found to disappear above the Curie temperature in full agreement with theoretical expectations. Relaxation of apparent surface potential after the transition to paraelectric state on heating and during the transition to ferroelectric state on cooling was observed. The kinetics of potential relaxation was orders of magnitude slower than that of the transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.