Abstract
Concrete durability is greatly influenced by the transport rate of aggressive chemicals. Moisture diffusion plays a key role in the long-term performance of cementitious materials, as it facilitates the entry of aggressive chemicals into concrete. The pore size distribution plays a critical role in determining moisture diffusivity. However, the characteristics of the concrete pore structure have not been included comprehensively in the material models so far. In this paper, a theoretical model was developed to obtain the pore size volume fractions for each diffusion mechanism including Molecular, Knudsen and Surface diffusions. An effective moisture diffusivity in concrete was then obtained using the weighted average based on the diffusion mechanisms and pore size volume fractions. The model’s validity was demonstrated by comparing model predictions with available experimental data. The findings of this study provide valuable insights into the behavior of the concrete pore structure and its impact on moisture diffusivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.