Abstract

Three-dimensional structure of crack tip dislocations were investigated by combining scanning transmission electron microscopy (STEM) and electron tomography (ET) in silicon single crystals. P-type (001) silicon single crystals were employed. <110> cracks were introduced from an indent on the (001) surface. The specimen was heated at 873K in order to introduce dislocations at the crack tips. The specimen was thinned to include the crack tip in the foil by an iron milling machine. STEM-ET observation revealed the three-dimensional structure of crack tip dislocations. Their Burgers vectors were determined by using an invisibility criterion. The local stress intensity factor was calculated using the dislocation characters obtained in the observation in this study, indicating that the dislocations observed were mode II shielding type dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.