Abstract

Solution-based template wetting is demonstrated as an effective means of producing semiconductor–insulator nanocomposites. The properties of such nanocomposites formed by incorporating two commonly investigated semiconducting polymers, poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT), along with their blend, into nanoporous aluminum oxide (AAO) are investigated electronically and spectroscopically. Significant improvement in hole mobility of amorphous MEH-PPV in a nanocomposite with AAO while such improvement is absent when the crystalline P3HT is utilized to fabricate the AAO nanocomposites. Spectral evidence indicates that increased molecular order is responsible for this observation. Carrier mobility intermediate to the homopolymer nanocomposites was observed in composites fabricated from an MEH-PPV:P3HT blend and an AAO membrane. Spectral evidence indicates that these two polymers phase segregate in the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.