Abstract

Together with PRR1/TOC1, PRR5 belongs to the small family of Pseudo-Response Regulators (PRRs), which function as clock components of Arabidopsis thaliana. We employed a set of transgenic lines, each of which was designed to misexpress a truncated form of the PRR5 molecule, together with the original transgenic line (named PRR5-ox) that misexpresses the entire PRR5 polypeptide. The results of genetic analysis suggested that PRR5-ox seedlings showed a phenotype of hypersensitivity to red light during early photomorphogenesis in a manner dependent on red light photoreceptors (PhyA and PhyB), but independent of PRR1/TOC1. The set of newly constructed transgenic lines (named PRR5-N-ox and PRR5-C-ox) were also characterized in terms of circadian-associated phenotypes. The results suggest that the N-terminal pseudo-receiver domain of the PRR5 molecule seems to be dispensable for the misexpressed PRR5 molecule to bring about the phenotype of red light sensitivity. However, PRR5-N-ox plants, misexpressing only the pseudo-receiver domain, showed a phenotype of long period of free-running circadian rhythms of certain clock-controlled genes. Considering these and other results, we discuss the structure and function of PRR5 in the context of current views of the circadian clock in higher plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.