Abstract

BackgroundPhysarum polycephalum is an unusual macroscopic myxomycete expressing a large range of glycosyl hydrolases. Among them, enzymes from the GH18 family can hydrolyze chitin, an important structural component of the cell walls in fungi and in the exoskeleton of insects and crustaceans. MethodsLow stringency sequence signature search in transcriptomes was used to identify GH18 sequences related to chitinases. Identified sequences were expressed in E. coli and corresponding structures modelled. Synthetic substrates and in some cases colloidal chitin were used to characterize activities. ResultsCatalytically functional hits were sorted and their predicted structures compared. All share the TIM barrel structure of the GH18 chitinase catalytic domain, optionally fused to binding motifs, such as CBM50, CBM18, and CBM14, involved in sugar recognition. Assessment of the enzymatic activities following deletion of the C-terminal CBM14 domain of the most active clone evidenced a significant contribution of this extension to the chitinase activity. A classification based on module organization, functional and structural criteria of characterized enzymes was proposed. ConclusionsPhysarum polycephalum sequences encompassing a chitinase like GH18 signature share a modular structure involving a structurally conserved catalytic TIM barrels decorated or not by a chitin insertion domain and optionally surrounded by additional sugar binding domains. One of them plays a clear role in enhancing activities toward natural chitin. General significanceMyxomycete enzymes are currently poorly characterized and constitute a potential source for new catalysts. Among them glycosyl hydrolases have a strong potential for valorization of industrial waste as well as in therapeutic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.