Abstract

Cavitation pressure fields under a cavitating jet and an ultrasonic horn were recorded for different conditions using high frequency response pressure transducers. This was aimed at characterizing the impulsive pressures generated by cavitation at different intensities. The pressure signals were analyzed and statistics of the amplitudes and widths of the impulsive pressure peaks were extracted. Plots of number densities and cumulative numbers of peaks as functions of peak amplitude, peak width, and the power of the ultrasonic horn or the jet were generated. The analysis revealed the dominance of pulses with smaller amplitudes and larger durations at lower cavitation intensities and the increase of the amplitudes and reduction of the pulse widths at higher intensities. The ratio of the most probable peak amplitude to peak width was computed. A representative Gaussian curve was then generated for each signal using a characteristic peak amplitude and the corresponding most probable peak duration/width. This resulted in a proposed statistical representation of a cavitation field, useful to characterize cavitation fields of various intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.