Abstract

Acetylcholinesterase (AChE; EC 3.1.1.7) is a serine hydrolase, whose main function is to modulate neurotransmission at cholinergic synapses. It is, therefore, the primary target of some pesticides and heavy metals. Its inhibition in aquatic organisms has been used as an indicator of the presence of these pollutants in water bodies. The present study aimed to characterize physicochemical and kinetic parameters of brain AChE in the benthic fish Hoplosternum littorale and to analyze the in vitro effects of pesticides (dichlorvos, diazinon, chlorpyrifos, parathion-methyl, temephos, carbaryl, carbofuran, aldicarb, diflubenzuron, novaluron and pyriproxyfen) and metal ions (As3+, Cd2+, Cu2+, Fe2+, Mn2+, Mg2+, K+, Pb2+, Hg2+, Zn2+) investigating the potential of this enzyme as environmental biomarker based on current regulations. Specific substrates and inhibitors have indicated AChE to be the predominant cholinesterase (ChE) in the brain of H. littorale. Peak activity was observed at pH 8.0 and 30 °C. The enzymatic activity is otherwise moderately thermostable (≈ 50% activity at 45 °C). The enzyme can reduce the activation energy of acetylthiocholine hydrolysis reaction to 8.34 kcal mol−1 while reaching a rate enhancement of 106. Among the pesticides under study, dichlorvos presented an IC50 value below the maximum concentrations allowed by legislation. This study presents the first report on the inhibition of brain AChE activity from Siluriformes by the pesticides novaluron and pyriproxyfen. Mercury ion also exerted a strong inhibitory effect on its enzymatic activity. The H. littorale enzyme thus has the potential to function as an in vitro biomarker for the presence of the pesticide dichlorvos as well as mercury in areas of mining and industrial discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.