Abstract

The objective of this study was to investigate the effect of a lysine biosynthesis insertion mutation on the growth response and phenotype of Escherichia coli. The lysA gene encodes the last enzyme in the lysine biosynthetic pathway in most bacteria. This E. coli insertion mutant exhibited altered growth physiology and phenotype of the recipient E. coli. The constructed mutant could grow in the absence of lysine supplementation although the extent of growth after 7 h incubation in the presence of most lysine concentration was significantly ( p<0.05) decreased compared to that observed with the parent E. coli strain. The mutant was also less able to utilize carbon and nitrogen substrates than the parent E. coli strain as determined by using phenotype arrays. These results suggest that the carbon and nitrogen phenotype profiles of E. coli when measured on phenotype arrays are altered after targeted insertion mutagenesis in the lysA gene. Creation of altered phenotypes may have potential for pharmaceutical and biotechnological applications of lysine E. coli metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.