Abstract
The human mucus layer plays a vital role in maintaining health by providing a physical barrier to pathogens. This biological hydrogel also provides the microenvironment for commensal bacteria. Common models used to study host–microbe interactions include gnotobiotic animals or mammalian–microbial co-culture platforms. Many of the current in vitro models lack a sufficient mucus layer to host these interactions. In this study, we engineered a mucus-like hydrogel Consisting of a mixed alginate-mucin (ALG-MUC) hydrogel network by using low concentration calcium chloride (CaCl2) as crosslinker. We demonstrated that the incorporation of ALG-MUC hydrogels into an aqueous two-phase system (ATPS) co-culture platform can support the growth of a mammalian monolayer and pathogenic bacteria. The ALG-MUC hydrogels displayed selective diffusivity against macromolecules and stability with ATPS microbial patterning. Additionally, we showed that the presence of mucin within hydrogels contributed to an increase in antimicrobial resistance in ATPS patterned microbial colonies. By using common laboratory chemicals to generate a mammalian–microbial co-culture system containing a representative mucus microenvironment, this model can be readily adopted by typical life science laboratories to study host–microbe interaction and drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.