Abstract
Decidualization of endometrial stroma in the rat induces the expression and secretion of rat decidual PRL (rdPRL). Recently, we have generated a nontransformed rat uterine stromal cell line (UIII) that decidualizes spontaneously in culture. In this report, we have established by immunocytochemistry, RT-PCR, Western blot analysis, labeled amino acid incorporation and RIA that these cells express the rat PRL messenger RNA as well as synthesize and secrete PRL. We have also cloned by RT-PCR a 403-bp complementary DNA fragment whose sequence is identical with that of rat pituitary PRL. In addition, UIII cells express the PRL receptor (PRL-R) long form, all the components involved in the PRL signal transduction pathway, estrogen receptor β (ERβ) and α2-macroglobulin (α2-MG), which are known to be PRL-regulated genes. However, when UIII cells were treated with PRL, no regulation of these genes was observed. Moreover, in these cells, the PRL signaling components: the tyrosine kinase Jak2 and the transcription factor Stat5 were endogenously phosphorylated and their phosphorylation states were not enhanced in the presence of exogenous PRL. To examine whether the endogenously secreted PRL affects the expression of PRL-regulated genes, UIII cells were treated with either an anti-PRL receptor antibody or a Jak2 inhibitor, AG490. The anti-PRL receptor antibody decreased α2-MG expression. AG490 inhibited Jak2 and Stat5 phosphorylation, prevented Stat5 binding to its DNA consensus sequence, and also caused a dose-dependent down-regulation of α2-MG and ERβ expression. In contrast, AG490 enhanced PRL mRNA levels. In summary, we have established that the UIII stromal cells of uterine origin produce PRL. Furthermore, we have shown for the first time that decidual PRL may act locally to activate the Jak2/Stat5 pathway and up-regulate important genes involved in decidual growth and placentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.