Abstract

Principal neurons of the medial nucleus of the trapezoid body (MNTB) integrate the large, excitatory inputs from anteroventral cochlear nucleus (AVCN) bushy cells with conventional inhibitory inputs to produce an inhibitory output to the lateral and medial superior olive. This circuit is critical in the sound localization pathway of the auditory brainstem. Many ionic currents act in concert to produce the rapid phase-locked firing properties characteristic of MNTB principal neurons. We report here that MNTB neurons of the mouse possess a 2–4 nS instantaneous potassium-based leak current, probably mediated by TWIK two-pore potassium leak channels. The function of the leak current was examined by modulating its magnitude with a dynamic clamp. The leak current modulates the resting voltage by 5 mV/nS, reduces the input resistance of the cell by 5 MΩ/nS and reduces the membrane time constant by 0.075 μs/nS. The leak current also modulates spike timing. Given leak channels are highly regulated, they are well placed to influence the firing properties, and action potential timing in principal neurons of the MNTB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.