Abstract

Castor oil contains approximately 90% ricinoleic acid (RA) which is stored mainly in the form of tri-ricinoleic acid containing triacylglycerols (TAG). Ricinoleate is synthesized from oleate (18:1n-9) esterified to the sn-2 position of phosphatidylcholine (PtdCho) catalyzed by oleoyl-12-hydroxylase. PtdCho-derived diacylglycerol (DAG) is an important substrate pool for TAG synthesis, and the interconversion between PtdCho and DAG has been shown to play a critical role in channeling hydroxy fatty acids (HFA) to TAG. Although phospholipase D (PLD) has been reported to catalyze the hydrolysis of PtdCho to produce phosphatidic acid which can then be converted to DAG, its potential functions in the channeling of RA from PtdCho to DAG and the assembly of RA on TAG is largely unknown. In the present study, 11 PLD genes were identified from the Castor Bean Genome Database. Gene expression analysis indicated that RcPLD9 is expressed at relatively high levels in developing seeds compared to other plant tissues. Sequence and phylogenetic analyses revealed that RcPLD9 is a homolog of Arabidopsis PLDζ2. Overexpression of RcPLD9 in the Arabidopsis CL7 line producing C18-HFA resulted in RA content reductions in the polar lipid fraction (mainly PtdCho) and mono-HFA-TAG, but increased RA content in di-HFA-TAG. Since part of RA in di-HFA-TAG is derived from HFA-DAG, the results indicated that RcPLD9 facilitates the channeling of RA from PtdCho to DAG for its assembly on TAG in developing seeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.