Abstract
Microbes evolved resistance determinates for coping with arsenic toxicity are commonly regulated by a variety of transcriptional repressors (ArsRs). Ensifer adhaerens strain ST2 was previously shown tolerance to environmental organoarsenical methylarsenite (MAs(III)), which has been proposed to be a primordial antibiotic. In E. adhaerens strain ST2 chromosomal ars operon, two MAs(III) resistance genes, arsZ, encoding MAs(III) oxidase, and arsK, encoding MAs(III) efflux transporter, are controlled by a novel ArsR transcriptional repressor, EaArsR. It has two conserved cysteine pairs, Cys91-92 and Cys108-109. Electrophoretic mobility shift assays (EMSAs) demonstrate that EaArsR binds to two inverted-repeat sequences within the ars promoter between arsR and arsZ to repress ars operon transcription and that DNA binding is relieved upon binding of As(III) and MAs(III). Mutation of either Cys91 or Cys92 to serine (or both) abolished these mutants binding to the ars promoter. In contrast, both C108S and C109S mutants kept responsiveness to As(III) and MAs(III). These results suggest that cysteine pair Cys91-Cys92 and either Cys108 or Cys109 contribute to form arsenic binding site. Homology modeling of EaArsR indicates the binding site consisted of Cys91-Cys92 pair from one monomer and Cys108-Cys109 pair from the other monomer, which displays the diverse evolution of arsenic binding site in the ArsR metalloregulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.