Abstract

A novel esterase gene, est7K, was isolated from a compost metagenomic library. The gene encoded a protein of 411 amino acids and the molecular mass of the Est7K was estimated to be 44,969 Da with no signal peptide. Est7K showed the highest identity of 57% to EstA3, which is an esterase from a drinking water metagenome, when compared with the enzymes with reported properties. Est7K had three motifs, SMTK, YSV, and WGG, which correspond to the typical motifs of family VIII esterases, SxxK, Yxx, and WGG, respectively. Est7K did not have the GxSxG motif in most lipolytic enzymes. Three additional motifs, LxxxPGxxW, PLGMxDTxF, and GGxG, were found to be conserved in family VIII enzymes. The results of the phylogenetic analysis and the alignment study suggest that family VIII enzymes could be classified into two subfamilies, VIII.1 and VIII.2. The purified Est7K was optimally active at 40°C and pH 10.0. It was activated to exhibit a 2.1-fold higher activity by the presence of 30% methanol. It preferred short-length p-nitrophenyl esters, particularly p-nitrophenyl butyrate, and efficiently hydrolyzed glyceryl tributyrate. It did not hydrolyze β-lactamase substrates, tertiary alcohol esters, glyceryl trioleate, fish oil, and olive oil. Est7K preferred an Senantiomer, such as (S)-methyl-3-hydroxy-2-methylpropionate, as the substrate. The tolerance to methanol and the substrate specificity may provide potential advantage in the use of the enzyme in pharmaceutical and other biotechnological processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.