Abstract

The present work aimed to characterize the microstructure of the icosahedral phase (quasicrystalline phase-ϕ) of the system with stoichiometric composition of the quasicrystal Al 63 Cu 25 Fe 12 . The ternary alloy with nominal composition of Al 63 Cu 25 Fe 12 was processed by mechanical alloying (MA) as a viable solid state processing method for producing various metastable and stable quasicrystalline phases. The structural characterization of the obtained samples was performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the elemental composition was determined by dispersive energy spectroscopy (DES). The diffraction patterns of Al 63 Cu 25 Fe 12 showed the presence of quasicrystalline phase-ϕ, ω-Al 7 Cu 2 Fe, β-Al(Fe, Cu) and λ-Al 13 Fe 4 phases that coexist with the thermodynamic quasicrystalline phase-ϕ. In icosahedral phase oxidation of aluminum forms a dense layer on the passivating outer most surface of the quasicrystal which causes depletion in both copper and iron. It was observed not only the presence of alumina, γ-Al 2 O 3 , but also the formation of hematite and copper oxide in the dense layer. Finally, elemental analysis indicates that during alloy synthesis there is little variation of the ideal composition. The results indicate that alloys with high percentage of icosahedral phase can be obtained by casting in the air. DOI: http://dx.doi.org/10.17807/orbital.v11i3.1381

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.