Abstract
The process of endospore formation in Bacillus subtilis is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a sigma-factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism B. subtilis. YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL in vivo. A yuaG disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.