Abstract

Research Highlights: The distribution of simple sequence repeat (SSR) motifs in two draft genomes of pecan was evaluated. Sixty-six SSR loci were validated by PCR amplification in pecan. Twenty-two new development markers can be used for genetic study in genus Carya. Background and Objectives: Pecan has good nutritional and health benefits and is an important crop worldwide. However, the genetic research in this species is insufficient. One of the main reasons for this is the lack of enough accurate, convenient, and economical molecular markers. Among different marker types, SSR loci are enormously useful in genetic studies. However, the number of SSRs in C. illinoinensis (Wangenh.) K. Koch is limited. Materials and Methods: The distribution of SSR motifs in the pecan genome was analyzed. Then, the primers for each SSR were designed. To evaluate their availability, 74 SSR loci were randomly selected and amplified in pecan. Finally, 22 new SSRs and eight former ones were picked to evaluate the genetic diversity in 60 pecan genotypes and to determine their transferability in other Carya species. Results: 145,714 and 143,041 SSR motifs were obtained from two draft genomes of ‘87MX3-2’ and ‘Pawnee’, respectively. In total, 9145 candidate primers were obtained. Sixty-six (89.19%) primers amplified the target products. Among the 30 SSRs, 29 loci showed polymorphism in 60 pecan genotypes. The polymorphic information content (PIC) values ranged from 0.012 to 0.906. In total, 26, 25, and 22 SSRs can be used in C. cathayensis Sarg., C. dabieshanensis W. C. Cheng & R. H. Chang, and C. hunanensis W.C. Liu, respectively. Finally, the dendrogram of all individuals was constructed. The results agree with the geographic origin of the four species and the pedigree relationships between different pecan cultivars. Conclusions: The characterization of SSRs in the pecan genome and the new SSRs will promote the progress of genetic study and breeding in pecan, as well as other species of genus Carya.

Highlights

  • IntroductionKoch), native to North America, is an important crop worldwide [1]

  • The results showed that 48,009 (38.54%) out of 124,560 scaffolds (531.7 Mb) of ‘87MX3-2’

  • The progress of genetic study in pecan is limited by the lack of a sufficient number of accurate, convenient, and economical molecular markers

Read more

Summary

Introduction

Koch), native to North America, is an important crop worldwide [1]. Pecan nuts are rich in unsaturated fatty acids, phenolics, and flavonoids and have good nutritional and health benefits [2,3,4]. The nut shell contains high levels of bioactive compounds, including tocopherols, phytosterols, total phenolics, and condensed tannins, and shows antioxidant, antimicrobial, and potential anticancer activity [5,6]. The high oil content (>70% of the fresh weight) and high mono-unsaturated fatty acids content of the nut make pecan an excellent oil crop [4]. The biomass waste of the tree makes pecan a potential energy crop [7].

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.