Abstract

In this study, thirty-four soil samples from a typical chlor-alkali slag residue storage site near the city of Qiqihar in northeastern China were collected and their arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc concentrations were determined. Sources of these heavy metals were analyzed with a positive matrix factorization model, and the health risks associated with different pollution sources were calculated. The results showed that mercury was the main heavy metal pollutant at the site (maximum concentration of 112.19 mg.kg−1) and the soil was also contaminated with arsenic, copper and lead. The sources of eight heavy metals were: mixed oil refinery wastewater and parent material (arsenic, chromium, copper and lead), vinyl chloride waste source (mercury), parent material (cadmium, nickel and zinc). The average potential ecological risk of the soil was 22344.39, with vinyl chloride waste source contributing 99.85% of this risk. The average carcinogenic risk of a mixture of oil refinery wastewater and parent material for children and adults was 9.06×10−6 and 6.36×10−6, respectively, accounting for 99.9% (children) and 99.48% (adults) of the total average carcinogenic risk. The average hazard index of vinyl chloride waste source for children and adults was 0.6 and 0.38, respectively, which accounted for 64.13% (children) and 52.34% (adults) of the total hazard index. These results provide a reference for soil pollution risk assessments at this type of site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.