Abstract

The interaction between copper-rich precipitates in α-iron and either vacancies or self-interstitial atoms and their clusters is studied by atomic-scale modelling. Results are compared with predictions of elasticity theory and interpreted in terms of size misfit of precipitates and defects, and the modulus and cohesive energy differences between iron and copper. Interstitial defects are repelled by precipitates at large distance but, like vacancies, attracted at small distance. Hence, copper precipitates in iron can be sinks for both vacancy and interstitial defects, and can act as strong recombination centres under irradiation conditions. This leads to a tentative explanation for the mixed Cu–Fe structure of precipitates and the absence of precipitate growth under neutron irradiation conditions. More generally, both vacancy and interstitial defects may be strongly bound to precipitates with weaker cohesion than the matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.