Abstract

We discuss the tribological performance of sputtered amorphous carbon (a-C) films deposited by closed-field unbalanced magnetron (CFUBM) sputtering with a graphite target using a mixture of helium (He) and argon (Ar) as sputtering gases. We investigated the effects of the graphite target power density on the micro-structural and physical properties. In the Raman spectra, the G-peak position moved to the higher wavenumbers. The ID/IG ratio increased with the increase of target power density in the fixed DC bias voltage. This was the result of the structural change in the a-C film that resulted with the increase in sp2 bonding fraction. Also, the maximum hardness of the a-C film was 23 GPa, the friction coefficient was 0.1, and the critical load was 25.9 N on the Si wafer. In addition, the compressive residual stress of the film increased a little with increasing target power density. Consequently, the various properties of a-C films, with an increase of the target power density, were associated with the increase of cross-linked sp2 bonding fraction and the cluster size. The tribological properties of a-C film showed clear dependence on the energy of ion bombardment with the increase of plasma density during film growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.