Abstract

Two organic light-emitting devices (OLEDs) were fabricated to investigate the mechanism of electroluminescence (EL) switching accompanying the spin transition of [Fe(dpp)2](BF4)2 (dpp=2,6-di(pyrazol-1-yl)pyridine) observed in an OLED with the structure indium tin oxide (ITO)/[Fe(dpp)2](BF4)2:chlorophyll a/Al, consisting of a chlorophyll a (Chl a)-doped [Fe(dpp)2](BF4)2 film. One OLED consisted of poly(N-vinylcarbazole) (PVK) between an ITO electrode and the active layer, and the other contained the electron transporting dye Nile Red (NR) as an emitting dopant material instead of the hole transporting Chl a. In both devices ITO/PVK/[Fe(dpp)2](BF4)2:Chl a/Al and ITO/[Fe(dpp)2](BF4)2:NR/Al, EL emission from the dye compound was observed, irrespective of the spin state of [Fe(dpp)2](BF4)2. It was determined that the EL switching accompanying the spin transition was dominated by a change in the molecular orbital level concerning electron transport in [Fe(dpp)2](BF4)2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.