Abstract

Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in only part of the device. Also, heating efficiency is low because it has high sheet resistance (Rs). To address these problems, this study introduced hybrid layers of ITO/Ag/ITO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thicknesses of the metal interlayer. The Rs of ITO(40)/Ag/ITO(40 nm) hybrid TFHs were 5.33, 3.29 and 2.15 Ω/□ for Ag thicknesses of 10, 15, and 20 nm, respectively, while the Rs of an ITO monolayer (95 nm) was 59.58 Ω/□. The maximum temperatures of these hybrid TFHs were 92, 131, and 145°C, respectively, under a voltage of 3 V. And that of the ITO monolayer was only 32°C. For the same total thickness of 95 nm, the heat generation rate (HGR) of the hybrid produced a temperature approximately 100°C higher than the ITO monolayer. It was confirmed that the film with the lowest Rs of the samples had the highest HGR for the same applied voltage. Overall, hybrid layers of ITO/Ag/ITO showed excellent performance for HGR, uniformity of heat distribution, and thermal response time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.