Abstract

The confocal Raman technique is widely used for the depth profiling of thin transparent polymer films. Reported depth resolutions are on the order of two micrometers. The depth resolution is worsened and the actual measurement depth is changed by the use of metallurgical “dry” objectives. Also, if the sample is strongly light scattering, the measurement depth is reduced drastically. In this work, we demonstrate how these problems can be circumvented by using an immersion technique in confocal Raman depth profiling. In the method, two different immersion fluid layers and a cover glass, which separates the two fluid layers, are used. This configuration allows the fluid that is in contact with the sample to be selected with respect to the requirements dictated by the refractive index of the sample, sample–immersion fluid interaction, Raman spectra overlapping, or fluorescence quenching properties. The use of the immersion technique results in major improvements in the depth resolution and in the depth profiling capability of the confocal Raman technique when applied to strongly light scattering materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.