Abstract

Hydrogenase, an important electroactive enzyme of sulphate-reducing bacteria (SRB), has been discovered having the capacity to connect its activity to solid electrodes by catalyzing hydrogen evolution and oxidation. However, little attention has been paid to similar electroactive characteristics of SRB. In this study, the electroactivities of pyrolytic graphite electrode (PGE) coated with SRB biofilm were investigated. Two corresponding redox peaks were observed by cyclic voltammetry detection, which were related to the hydrogen evolution and oxidation. Moreover, the overpotential for the reactions decreased by about 0.2 V in the presence of the SRB biofilm. When the PGE coated with the SRB biofilm was polarized at 0.24 V (vs. SHE), an oxidation current related to the hydrogen oxidation was found. The SRB biofilm was able to obtain electrons from the −0.61 V (vs. SHE) polarized PGE to form hydrogen, and the electron transfer resistance also decreased with the formation of SRB biofilm, as measured by the non-destructive electrochemical impendence spectroscopy detection. It was concluded that the hydrogen evolution and oxidation was an important way for the electron transfer between SRB biofilm and solid electrode in anaerobic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.