Abstract

PurposeHyaluronan (HA) overproduction by orbital fibroblasts (OFs) is a major factor in the pathogenesis of Graves’ orbitopathy (GO). 4-methylumbelliferone (4-MU) is an inhibitor of HA synthesis in different cell types in vitro and has beneficial effects in animal models of autoimmune diseases.MethodsHA production and mRNA expression of HA synthases (HAS1, HAS2, and HAS3) and hyaluronidases (HYAL1 and HYAL2) were measured in the presence and absence of 4-MU in unstimulated and transforming growth factor–β–stimulated fibroblasts from GO orbital (n = 4), non-GO orbital (n = 4), and dermal origin (n = 4).ResultsThe 4-MU treatment (1 mM) for 24 hours resulted in an average 87% reduction (P < 0.001) of HA synthesis, decreased the expression of the dominant HAS isoform (HAS2) by 80% (P < 0.0001), and increased the HYAL2 expression by 2.5-fold (P < 0.001) in control OFs, GO OFs, and dermal fibroblasts (DFs) regardless of the origin of the cells. The proliferation rate of all studied cell lines was reduced to an average 16% by 4-MU (P < 0.0001) without any effects on cell viability. HA production stimulated by transforming growth factor–β was decreased by 4-MU via inhibition of stimulated HAS1 expression in addition to the observed effects of 4-MU in unstimulated cases. Characteristics of HA synthesis inhibition by 4-MU did not differ in OFs compared with DFs.Conclusions4-MU has been found to inhibit the HA synthesis and the proliferation rate in OFs in vitro, adding it to the list of putative therapeutic agents in a disease the cure of which is largely unresolved.

Highlights

  • Hyaluronan (HA) overproduction by orbital fibroblasts (OFs) is a major factor in the pathogenesis of Graves’ orbitopathy (GO). 4-methylumbelliferone (4-MU) is an inhibitor of HA synthesis in different cell types in vitro and has beneficial effects in animal models of autoimmune diseases

  • The 4-MU treatment (1 mM) for 24 hours resulted in an average 87% reduction (P < 0.001) of HA synthesis, decreased the expression of the dominant HAS isoform (HAS2) by 80% (P < 0.0001), and increased the HYAL2 expression by 2.5-fold (P < 0.001) in control OFs, GO OFs, and dermal fibroblasts (DFs) regardless of the origin of the cells

  • Our in vitro study on the characteristics of HA synthesis inhibition by 4-MU in OFs may serve as a starting point for further research on the potential beneficial effects of limiting HA production in GO

Read more

Summary

METHODS

HA production and mRNA expression of HA synthases (HAS1, HAS2, and HAS3) and hyaluronidases (HYAL1 and HYAL2) were measured in the presence and absence of 4-MU in unstimulated and transforming growth factor–β–stimulated fibroblasts from GO orbital (n = 4), non-GO orbital (n = 4), and dermal origin (n = 4)

RESULTS
MATERIALS AND METHODS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.