Abstract

Graphite particles modified with carbon film coating were prepared by a CVD method. Surface characteristics of carbon-coated graphite were analyzed by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Carbon film was uniformly coated on the graphite surface. Raman, HRTEM, and EELS studies indicated that the structures of the carbon coatings were disordered. Specific surface area of the graphite particles was decreased by carbon coating. Graphite particles coated with carbon were used as anode materials for Li-ion batteries and tested the charge/discharge ability. Uncoated graphite can only achieve 260 mAh/g specific capacity. After disordered carbon was coated onto graphite, the discharge capacity showed an increase up to 300 mAh/g. The anode can achieve a stable discharge capacity and excellent coulombic efficiency after about 60 cycles at 300 mAh/g specific capacity cutoff, and maintain a capacity cutoff of 350 mAh/g capacity without fading after another 30 cycles at a capacity cutoff of 350 mAh/g. The improvements on capacity and cyclability were due to suppression of electrolyte decomposition by the disordered carbon coated on the graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.